You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
liballoc/liballoc.c

535 lines
11 KiB
C

#include <liballoc.h>
/** Durand's Ridiculously Amazing Super Duper Memory functions. */
//#define DEBUG
#define LIBALLOC_MAGIC 0xc001c0de
#define MAXCOMPLETE 5
#define MAXEXP 32
#define MINEXP 8
#define MODE_BEST 0
#define MODE_INSTANT 1
#define MODE MODE_BEST
#ifdef DEBUG
#include <stdio.h>
#endif
struct boundary_tag* l_freePages[MAXEXP]; //< Allowing for 2^MAXEXP blocks
int l_completePages[MAXEXP]; //< Allowing for 2^MAXEXP blocks
#ifdef DEBUG
unsigned int l_allocated = 0; //< The real amount of memory allocated.
unsigned int l_inuse = 0; //< The amount of memory in use (malloc'ed).
#endif
static int l_initialized = 0; //< Flag to indicate initialization.
static int l_pageSize = 4096; //< Individual page size
static int l_pageCount = 16; //< Minimum number of pages to allocate.
// *********** HELPER FUNCTIONS *******************************
/** Returns the exponent required to manage 'size' amount of memory.
*
* Returns n where 2^n <= size < 2^(n+1)
*/
static inline int getexp( unsigned int size )
{
if ( size < (1<<MINEXP) )
{
#ifdef DEBUG
printf("getexp returns -1 for %i less than MINEXP\n", size );
#endif
return -1; // Smaller than the quantum.
}
int shift = MINEXP;
while ( shift < MAXEXP )
{
if ( (1<<shift) > size ) break;
shift += 1;
}
#ifdef DEBUG
printf("getexp returns %i (%i bytes) for %i size\n", shift - 1, (1<<(shift -1)), size );
#endif
return shift - 1;
}
static void* liballoc_memset(void* s, int c, size_t n)
{
int i;
for ( i = 0; i < n ; i++)
((char*)s)[i] = c;
return s;
}
static void* liballoc_memcpy(void* s1, const void* s2, size_t n)
{
char *cdest;
char *csrc;
unsigned int *ldest = (unsigned int*)s1;
unsigned int *lsrc = (unsigned int*)s2;
while ( n >= sizeof(unsigned int) )
{
*ldest++ = *lsrc++;
n -= sizeof(unsigned int);
}
cdest = (char*)ldest;
csrc = (char*)lsrc;
while ( n > 0 )
{
*cdest++ = *csrc++;
n -= 1;
}
return s1;
}
#ifdef DEBUG
static void dump_array()
{
int i = 0;
struct boundary_tag *tag = NULL;
printf("------ Free pages array ---------\n");
printf("System memory allocated: %i\n", l_allocated );
printf("Memory in used (malloc'ed): %i\n", l_inuse );
for ( i = 0; i < MAXEXP; i++ )
{
printf("%.2i(%i): ",i, l_completePages[i] );
tag = l_freePages[ i ];
while ( tag != NULL )
{
if ( tag->split_left != NULL ) printf("*");
printf("%i", tag->real_size );
if ( tag->split_right != NULL ) printf("*");
printf(" ");
tag = tag->next;
}
printf("\n");
}
printf("'*' denotes a split to the left/right of a tag\n");
fflush( stdout );
}
#endif
static inline void insert_tag( struct boundary_tag *tag, int index )
{
int realIndex;
if ( index < 0 )
{
realIndex = getexp( tag->real_size - sizeof(struct boundary_tag) );
if ( realIndex < MINEXP ) realIndex = MINEXP;
}
else
realIndex = index;
tag->index = realIndex;
if ( l_freePages[ realIndex ] != NULL )
{
l_freePages[ realIndex ]->prev = tag;
tag->next = l_freePages[ realIndex ];
}
l_freePages[ realIndex ] = tag;
}
static inline void remove_tag( struct boundary_tag *tag )
{
if ( l_freePages[ tag->index ] == tag ) l_freePages[ tag->index ] = tag->next;
if ( tag->prev != NULL ) tag->prev->next = tag->next;
if ( tag->next != NULL ) tag->next->prev = tag->prev;
tag->next = NULL;
tag->prev = NULL;
tag->index = -1;
}
static inline struct boundary_tag* melt_left( struct boundary_tag *tag )
{
struct boundary_tag *left = tag->split_left;
left->real_size += tag->real_size;
left->split_right = tag->split_right;
if ( tag->split_right != NULL ) tag->split_right->split_left = left;
return left;
}
static inline struct boundary_tag* absorb_right( struct boundary_tag *tag )
{
struct boundary_tag *right = tag->split_right;
remove_tag( right ); // Remove right from free pages.
tag->real_size += right->real_size;
tag->split_right = right->split_right;
if ( right->split_right != NULL )
right->split_right->split_left = tag;
return tag;
}
static inline struct boundary_tag* split_tag( struct boundary_tag* tag )
{
unsigned int remainder = tag->real_size - sizeof(struct boundary_tag) - tag->size;
struct boundary_tag *new_tag =
(struct boundary_tag*)((unsigned int)tag + sizeof(struct boundary_tag) + tag->size);
new_tag->magic = LIBALLOC_MAGIC;
new_tag->real_size = remainder;
new_tag->next = NULL;
new_tag->prev = NULL;
new_tag->split_left = tag;
new_tag->split_right = tag->split_right;
if (new_tag->split_right != NULL) new_tag->split_right->split_left = new_tag;
tag->split_right = new_tag;
tag->real_size -= new_tag->real_size;
insert_tag( new_tag, -1 );
return new_tag;
}
// ***************************************************************
static struct boundary_tag* allocate_new_tag( unsigned int size )
{
unsigned int pages;
unsigned int usage;
struct boundary_tag *tag;
// This is how much space is required.
usage = size + sizeof(struct boundary_tag);
// Perfect amount of space
pages = usage / l_pageSize;
if ( (usage % l_pageSize) != 0 ) pages += 1;
// Make sure it's >= the minimum size.
if ( pages < l_pageCount ) pages = l_pageCount;
tag = (struct boundary_tag*)liballoc_alloc( pages );
if ( tag == NULL ) return NULL; // uh oh, we ran out of memory.
tag->magic = LIBALLOC_MAGIC;
tag->size = size;
tag->real_size = pages * l_pageSize;
tag->index = -1;
tag->next = NULL;
tag->prev = NULL;
tag->split_left = NULL;
tag->split_right = NULL;
#ifdef DEBUG
printf("Resource allocated %x of %i pages (%i bytes) for %i size.\n", tag, pages, pages * l_pageSize, size );
l_allocated += pages * l_pageSize;
printf("Total memory usage = %i KB\n", (int)((l_allocated / (1024))) );
#endif
return tag;
}
void *malloc(size_t size)
{
int index;
void *ptr;
struct boundary_tag *tag = NULL;
liballoc_lock();
if ( l_initialized == 0 )
{
#ifdef DEBUG
printf("%s\n","liballoc initializing.");
#endif
for ( index = 0; index < MAXEXP; index++ )
{
l_freePages[index] = NULL;
l_completePages[index] = 0;
}
l_initialized = 1;
}
index = getexp( size ) + MODE;
if ( index < MINEXP ) index = MINEXP;
// Find one big enough.
tag = l_freePages[ index ]; // Start at the front of the list.
while ( tag != NULL )
{
// If there's enough space in this tag.
if ( (tag->real_size - sizeof(struct boundary_tag))
>= (size + sizeof(struct boundary_tag) ) )
{
#ifdef DEBUG
printf("Tag search found %i >= %i\n",(tag->real_size - sizeof(struct boundary_tag)), (size + sizeof(struct boundary_tag) ) );
#endif
break;
}
tag = tag->next;
}
// No page found. Make one.
if ( tag == NULL )
{
if ( (tag = allocate_new_tag( size )) == NULL )
{
liballoc_unlock();
return NULL;
}
index = getexp( tag->real_size - sizeof(struct boundary_tag) );
}
else
{
remove_tag( tag );
if ( (tag->split_left == NULL) && (tag->split_right == NULL) )
l_completePages[ index ] -= 1;
}
// We have a free page. Remove it from the free pages list.
tag->size = size;
// Removed... see if we can re-use the excess space.
#ifdef DEBUG
printf("Found tag with %i bytes available (requested %i bytes, leaving %i), which has exponent: %i (%i bytes)\n", tag->real_size - sizeof(struct boundary_tag), size, tag->real_size - size - sizeof(struct boundary_tag), index, 1<<index );
#endif
unsigned int remainder = tag->real_size - size - sizeof( struct boundary_tag ) * 2; // Support a new tag + remainder
if ( ((int)(remainder) > 0) /*&& ( (tag->real_size - remainder) >= (1<<MINEXP))*/ )
{
int childIndex = getexp( remainder );
if ( childIndex >= 0 )
{
#ifdef DEBUG
printf("Seems to be splittable: %i >= 2^%i .. %i\n", remainder, childIndex, (1<<childIndex) );
#endif
struct boundary_tag *new_tag = split_tag( tag );
new_tag = new_tag; // Get around the compiler warning about unused variables.
#ifdef DEBUG
printf("Old tag has become %i bytes, new tag is now %i bytes (%i exp)\n", tag->real_size, new_tag->real_size, new_tag->index );
#endif
}
}
ptr = (void*)((unsigned int)tag + sizeof( struct boundary_tag ) );
#ifdef DEBUG
l_inuse += size;
printf("malloc: %x, %i, %i\n", ptr, (int)l_inuse / 1024, (int)l_allocated / 1024 );
dump_array();
#endif
liballoc_unlock();
return ptr;
}
void free(void *ptr)
{
int index;
struct boundary_tag *tag;
if ( ptr == NULL ) return;
liballoc_lock();
tag = (struct boundary_tag*)((unsigned int)ptr - sizeof( struct boundary_tag ));
if ( tag->magic != LIBALLOC_MAGIC )
{
liballoc_unlock(); // release the lock
return;
}
#ifdef DEBUG
l_inuse -= tag->size;
printf("free: %x, %i, %i\n", ptr, (int)l_inuse / 1024, (int)l_allocated / 1024 );
#endif
// MELT LEFT...
while ( (tag->split_left != NULL) && (tag->split_left->index >= 0) )
{
#ifdef DEBUG
printf("Melting tag left into available memory. Left was %i, becomes %i (%i)\n", tag->split_left->real_size, tag->split_left->real_size + tag->real_size, tag->split_left->real_size );
#endif
tag = melt_left( tag );
remove_tag( tag );
}
// MELT RIGHT...
while ( (tag->split_right != NULL) && (tag->split_right->index >= 0) )
{
#ifdef DEBUG
printf("Melting tag right into available memory. This was was %i, becomes %i (%i)\n", tag->real_size, tag->split_right->real_size + tag->real_size, tag->split_right->real_size );
#endif
tag = absorb_right( tag );
}
// Where is it going back to?
index = getexp( tag->real_size - sizeof(struct boundary_tag) );
if ( index < MINEXP ) index = MINEXP;
// A whole, empty block?
if ( (tag->split_left == NULL) && (tag->split_right == NULL) )
{
if ( l_completePages[ index ] == MAXCOMPLETE )
{
// Too many standing by to keep. Free this one.
unsigned int pages = tag->real_size / l_pageSize;
if ( (tag->real_size % l_pageSize) != 0 ) pages += 1;
if ( pages < l_pageCount ) pages = l_pageCount;
liballoc_free( tag, pages );
#ifdef DEBUG
l_allocated -= pages * l_pageSize;
printf("Resource freeing %x of %i pages\n", tag, pages );
dump_array();
#endif
liballoc_unlock();
return;
}
l_completePages[ index ] += 1; // Increase the count of complete pages.
}
// ..........
insert_tag( tag, index );
#ifdef DEBUG
printf("Returning tag with %i bytes (requested %i bytes), which has exponent: %i\n", tag->real_size, tag->size, index );
dump_array();
#endif
liballoc_unlock();
}
void* calloc(size_t nobj, size_t size)
{
int real_size;
void *p;
real_size = nobj * size;
p = malloc( real_size );
liballoc_memset( p, 0, real_size );
return p;
}
void* realloc(void *p, size_t size)
{
void *ptr;
struct boundary_tag *tag;
int real_size;
if ( size == 0 )
{
free( p );
return NULL;
}
if ( p == NULL ) return malloc( size );
if ( liballoc_lock != NULL ) liballoc_lock(); // lockit
tag = (struct boundary_tag*)((unsigned int)p - sizeof( struct boundary_tag ));
real_size = tag->size;
if ( liballoc_unlock != NULL ) liballoc_unlock();
if ( real_size > size ) real_size = size;
ptr = malloc( size );
liballoc_memcpy( ptr, p, real_size );
free( p );
return ptr;
}