You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

183 lines
6.5 KiB
C

/*
MIT License
Copyright (c) 2020 LekKit https://github.com/LekKit
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
/* Details of the implementation, etc can be found here: https://en.wikipedia.org/wiki/SHA-2
See sha256.h for short documentation on library usage */
#include "sha256.h"
void sha256_init(struct sha256_buff* buff) {
buff->h[0] = 0x6a09e667;
buff->h[1] = 0xbb67ae85;
buff->h[2] = 0x3c6ef372;
buff->h[3] = 0xa54ff53a;
buff->h[4] = 0x510e527f;
buff->h[5] = 0x9b05688c;
buff->h[6] = 0x1f83d9ab;
buff->h[7] = 0x5be0cd19;
buff->data_size = 0;
buff->chunk_size = 0;
}
static const uint32_t k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#define rotate_r(val, bits) (val >> bits | val << (32 - bits))
static void sha256_calc_chunk(struct sha256_buff* buff, const uint8_t* chunk) {
uint32_t w[64];
uint32_t tv[8];
uint32_t i;
for (i=0; i<16; ++i){
w[i] = (uint32_t) chunk[0] << 24 | (uint32_t) chunk[1] << 16 | (uint32_t) chunk[2] << 8 | (uint32_t) chunk[3];
chunk += 4;
}
for (i=16; i<64; ++i){
uint32_t s0 = rotate_r(w[i-15], 7) ^ rotate_r(w[i-15], 18) ^ (w[i-15] >> 3);
uint32_t s1 = rotate_r(w[i-2], 17) ^ rotate_r(w[i-2], 19) ^ (w[i-2] >> 10);
w[i] = w[i-16] + s0 + w[i-7] + s1;
}
for (i = 0; i < 8; ++i)
tv[i] = buff->h[i];
for (i=0; i<64; ++i){
uint32_t S1 = rotate_r(tv[4], 6) ^ rotate_r(tv[4], 11) ^ rotate_r(tv[4], 25);
uint32_t ch = (tv[4] & tv[5]) ^ (~tv[4] & tv[6]);
uint32_t temp1 = tv[7] + S1 + ch + k[i] + w[i];
uint32_t S0 = rotate_r(tv[0], 2) ^ rotate_r(tv[0], 13) ^ rotate_r(tv[0], 22);
uint32_t maj = (tv[0] & tv[1]) ^ (tv[0] & tv[2]) ^ (tv[1] & tv[2]);
uint32_t temp2 = S0 + maj;
tv[7] = tv[6];
tv[6] = tv[5];
tv[5] = tv[4];
tv[4] = tv[3] + temp1;
tv[3] = tv[2];
tv[2] = tv[1];
tv[1] = tv[0];
tv[0] = temp1 + temp2;
}
for (i = 0; i < 8; ++i)
buff->h[i] += tv[i];
}
void sha256_update(struct sha256_buff* buff, const void* data, size_t size) {
const uint8_t* ptr = (const uint8_t*)data;
buff->data_size += size;
/* If there is data left in buff, concatenate it to process as new chunk */
if (size + buff->chunk_size >= 64) {
uint8_t tmp_chunk[64];
memcpy(tmp_chunk, buff->last_chunk, buff->chunk_size);
memcpy(tmp_chunk + buff->chunk_size, ptr, 64 - buff->chunk_size);
ptr += (64 - buff->chunk_size);
size -= (64 - buff->chunk_size);
buff->chunk_size = 0;
sha256_calc_chunk(buff, tmp_chunk);
}
/* Run over data chunks */
while (size >= 64) {
sha256_calc_chunk(buff, ptr);
ptr += 64;
size -= 64;
}
/* Save remaining data in buff, will be reused on next call or finalize */
memcpy(buff->last_chunk + buff->chunk_size, ptr, size);
buff->chunk_size += size;
}
void sha256_finalize(struct sha256_buff* buff) {
buff->last_chunk[buff->chunk_size] = 0x80;
buff->chunk_size++;
memset(buff->last_chunk + buff->chunk_size, 0, 64 - buff->chunk_size);
/* If there isn't enough space to fit int64, pad chunk with zeroes and prepare next chunk */
if (buff->chunk_size > 56) {
sha256_calc_chunk(buff, buff->last_chunk);
memset(buff->last_chunk, 0, 64);
}
/* Add total size as big-endian int64 x8 */
uint64_t size = buff->data_size * 8;
int i;
for (i = 8; i > 0; --i) {
buff->last_chunk[55+i] = size & 255;
size >>= 8;
}
sha256_calc_chunk(buff, buff->last_chunk);
}
void sha256_read(const struct sha256_buff* buff, uint8_t* hash) {
uint32_t i;
for (i = 0; i < 8; i++) {
hash[i*4] = (buff->h[i] >> 24) & 255;
hash[i*4 + 1] = (buff->h[i] >> 16) & 255;
hash[i*4 + 2] = (buff->h[i] >> 8) & 255;
hash[i*4 + 3] = buff->h[i] & 255;
}
}
static void bin_to_hex(const void* data, uint32_t len, char* out) {
static const char* const lut = "0123456789abcdef";
uint32_t i;
for (i = 0; i < len; ++i){
uint8_t c = ((const uint8_t*)data)[i];
out[i*2] = lut[c >> 4];
out[i*2 + 1] = lut[c & 15];
}
}
void sha256_read_hex(const struct sha256_buff* buff, char* hex) {
uint8_t hash[32];
sha256_read(buff, hash);
bin_to_hex(hash, 32, hex);
}
void sha256_easy_hash(const void* data, size_t size, uint8_t* hash) {
struct sha256_buff buff;
sha256_init(&buff);
sha256_update(&buff, data, size);
sha256_finalize(&buff);
sha256_read(&buff, hash);
}
void sha256_easy_hash_hex(const void* data, size_t size, char* hex) {
uint8_t hash[32];
sha256_easy_hash(data, size, hash);
bin_to_hex(hash, 32, hex);
}